3.145 \(\int \frac{\coth ^2(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=62 \[ -\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a d (a+b)^{3/2}}-\frac{\coth (c+d x)}{d (a+b)}+\frac{x}{a} \]

[Out]

x/a - (b^(3/2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a*(a + b)^(3/2)*d) - Coth[c + d*x]/((a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.179616, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {4141, 1975, 480, 522, 206, 208} \[ -\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a d (a+b)^{3/2}}-\frac{\coth (c+d x)}{d (a+b)}+\frac{x}{a} \]

Antiderivative was successfully verified.

[In]

Int[Coth[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

x/a - (b^(3/2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a*(a + b)^(3/2)*d) - Coth[c + d*x]/((a + b)*d)

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\coth ^2(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (1-x^2\right ) \left (a+b \left (1-x^2\right )\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac{\coth (c+d x)}{(a+b) d}+\frac{\operatorname{Subst}\left (\int \frac{a+2 b-b x^2}{\left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{(a+b) d}\\ &=-\frac{\coth (c+d x)}{(a+b) d}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{a d}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{a (a+b) d}\\ &=\frac{x}{a}-\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a (a+b)^{3/2} d}-\frac{\coth (c+d x)}{(a+b) d}\\ \end{align*}

Mathematica [B]  time = 1.1116, size = 193, normalized size = 3.11 \[ \frac{\text{sech}^2(c+d x) (a \cosh (2 (c+d x))+a+2 b) \left (b^2 (\sinh (2 c)-\cosh (2 c)) \tanh ^{-1}\left (\frac{(\cosh (2 c)-\sinh (2 c)) \text{sech}(d x) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt{a+b} \sqrt{b (\cosh (c)-\sinh (c))^4}}\right )+\sqrt{a+b} \sqrt{b (\cosh (c)-\sinh (c))^4} (d x (a+b)+a \text{csch}(c) \sinh (d x) \text{csch}(c+d x))\right )}{2 a d (a+b)^{3/2} \sqrt{b (\cosh (c)-\sinh (c))^4} \left (a+b \text{sech}^2(c+d x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Coth[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^2*(b^2*ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*Si
nh[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(-Cosh[2*c] + Sinh[2*c]) + Sqrt[a
 + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4]*((a + b)*d*x + a*Csch[c]*Csch[c + d*x]*Sinh[d*x])))/(2*a*(a + b)^(3/2)*d*(
a + b*Sech[c + d*x]^2)*Sqrt[b*(Cosh[c] - Sinh[c])^4])

________________________________________________________________________________________

Maple [B]  time = 0.072, size = 189, normalized size = 3.1 \begin{align*} -{\frac{1}{2\,d \left ( a+b \right ) }\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{1}{2\,da}{b}^{{\frac{3}{2}}}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ) \left ( a+b \right ) ^{-{\frac{3}{2}}}}+{\frac{1}{2\,da}{b}^{{\frac{3}{2}}}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}-2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ) \left ( a+b \right ) ^{-{\frac{3}{2}}}}-{\frac{1}{2\,d \left ( a+b \right ) } \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(d*x+c)^2/(a+b*sech(d*x+c)^2),x)

[Out]

-1/2/d/(a+b)*tanh(1/2*d*x+1/2*c)+1/d/a*ln(tanh(1/2*d*x+1/2*c)+1)-1/2/d*b^(3/2)/a/(a+b)^(3/2)*ln((a+b)^(1/2)*ta
nh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))+1/2/d*b^(3/2)/a/(a+b)^(3/2)*ln((a+b)^(1/2)*tanh
(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))-1/2/d/(a+b)/tanh(1/2*d*x+1/2*c)-1/d/a*ln(tanh(1/2
*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.66152, size = 1980, normalized size = 31.94 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*(2*(a + b)*d*x*cosh(d*x + c)^2 + 4*(a + b)*d*x*cosh(d*x + c)*sinh(d*x + c) + 2*(a + b)*d*x*sinh(d*x + c)^
2 - 2*(a + b)*d*x + (b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*sqrt(b/(a +
b))*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cos
h(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x
 + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) + 4*((a^2 + a*b)*cosh(d*x + c)^2 + 2*(a^2 + a*b)*cosh(d*x
 + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 + a^2 + 3*a*b + 2*b^2)*sqrt(b/(a + b)))/(a*cosh(d*x + c)^4 +
 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2
+ a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a)) - 4*a)/((a^2
+ a*b)*d*cosh(d*x + c)^2 + 2*(a^2 + a*b)*d*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*d*sinh(d*x + c)^2 - (a^2
+ a*b)*d), ((a + b)*d*x*cosh(d*x + c)^2 + 2*(a + b)*d*x*cosh(d*x + c)*sinh(d*x + c) + (a + b)*d*x*sinh(d*x + c
)^2 - (a + b)*d*x - (b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*sqrt(-b/(a +
 b))*arctan(1/2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(-b/(a
 + b))/b) - 2*a)/((a^2 + a*b)*d*cosh(d*x + c)^2 + 2*(a^2 + a*b)*d*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*d*
sinh(d*x + c)^2 - (a^2 + a*b)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\coth ^{2}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)**2/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(coth(c + d*x)**2/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.61348, size = 120, normalized size = 1.94 \begin{align*} -\frac{\frac{b^{2} \arctan \left (\frac{a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt{-a b - b^{2}}}\right )}{{\left (a^{2} + a b\right )} \sqrt{-a b - b^{2}}} - \frac{d x}{a} + \frac{2}{{\left (a + b\right )}{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

-(b^2*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/((a^2 + a*b)*sqrt(-a*b - b^2)) - d*x/a + 2/((
a + b)*(e^(2*d*x + 2*c) - 1)))/d